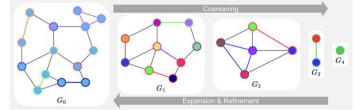
ETH zürich

Efficient and Scalable Graph Generation through Iterative Local Expansion

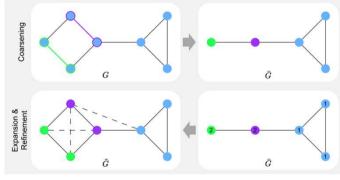

Andreas Bergmeister¹, Karolis Martinkus², Nathanaël Perraudin¹, Roger Wattenhofer³ ¹Swiss Data Science Center, ETH Zürich; ²Prescient Design, Genentech; ³DISCO, ETH Zürich

1 Excising Challenges

- current graph generation methods
 - model joint distribution over all $\mathcal{O}(n^2)$ node pairs
- recent works to improve scalability
 - make simplifying assumptions (community structure, edge independence, restricted bandwidth), sacrificing generality or sample fidelity

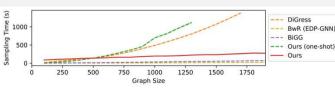
2 Our Idea

- model a progressive expansion process rather than the final graph directly
- · equivalent to inverting graph coarsening
- · achieve efficiency by only locally modifying graphs
- · no restrictive assumptions on the graph's structure

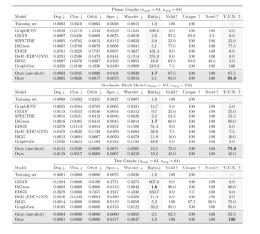

4 Local PPGN

- novel architecture to parameterize the diffusion model
- efficient on sparse graphs
- · more expressive than message-passing GNNs

•
$$(h')^{(i,j)} = \gamma (h^{(i,j)}, \sum_{k \in N^{-}(i) \cap N^{+}(j)} \phi (h^{(i,k)}, h^{(k,j)}))$$

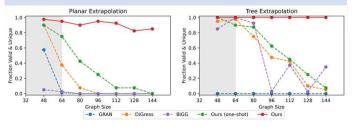

3 Details

- two-phase inversion of a single graph coarsening step
 - 1. expansion of the coarsened graph
 - 2. refinement of the resultant expanded graph
- probabilistic inversion
 - use denoising diffusion to model a distribution over
 - node features: size of expansion cluster
 - edge features: edge existence



5 Scalability

- theoretical **asymptotic complexity**: $O(m \log n)$
- scaling behaviour empirically validated on planar graphs


6 Generative Performance

Model	Proteins $(n_{max} = 500, n_{avg} = 258)$						Point Clouds $(n_{max} = 5037, n_{org} = 1332)$					
	$\text{Deg.}\downarrow$	Clus.↓	Orbit ↓	$\operatorname{Spec.}\downarrow$	Wavelet \downarrow	Ratio↓	$\mathrm{Deg}.\downarrow$	Clus.↓	Orbit \downarrow	$\operatorname{Spec.}\downarrow$	Wavelet \downarrow	Ratio↓
Training set	0.0003	0.0055	0.0032	0.0005	0.0003	1.0	0.0000	0.1768	0.0049	0.0043	0.0024	1.0
GraphRNN	0.004	0.1475	0.5851	0.0152	0.0530	91.3	OOM	OOM	OOM	OOM	OOM	OOM
GRAN	0.0479	0.1234	0.3458	0.0125	0.0341	87.5	0.0201	0.4330	0.2625	0.0051	0.0435	18.8
SPECTRE	0.0056	0.0843	0.0257	0.0052	0.0118	19.0	MOO	00M	OOM	OOM	OOM	OOM
DiGress	0.0041	0.0489	0.1286	0.0018	0.0065	18.0	MOO	00M	OOM	OOM	OOM	OOM
EDGE	0.1863	0.3406	0.6786	0.1075	0.2371	399.1	0.4441	0.3298	1.0730	0.4006	0.6310	143.4
BwR (EDP-GNN)	0.1262	0.4202	0.4909	00702	0.1199	245.4	0.4927	0.4650	1.0730	0.2912	0.5916	133.2
BiGG	0.0070	0.1150	0.4696	0.0067	0.0222	57.5	0.0994	0.6835	0.3633	0.1589	0.0994	38.8
GraphGen	0.0159	0.1677	0.3789	0.0181	0.0477	83.5	OOT	OOT	OOT	OOT	OOT	OOT
Ours (one-shot)	0.0015	0.0711	0.0396	0.0025	0.0086	13.3	OOM	OOM	OOM	OOM	OOM	OOM
Ours	0.0030	0.0309	0.0047	0.0013	0.0030	5.9	0.0139	0.5775	0.0780	0.0855	0.0186	7.0

7 Size Extrapolation

